Retrieval-augmented generation models offer many benefits over standalone language models: besides a textual answer to a given query they provide provenance items retrieved from an updateable knowledge base. However, they are also more complex systems and need to handle long inputs. In this work, we introduce FiD-Light to strongly increase the efficiency of the state-of-the-art retrieval-augmented FiD model, while maintaining the same level of effectiveness. Our FiD-Light model constrains the information flow from the encoder (which encodes passages separately) to the decoder (using concatenated encoded representations). Furthermore, we adapt FiD-Light with re-ranking capabilities through textual source pointers, to improve the top-ranked provenance precision. Our experiments on a diverse set of seven knowledge intensive tasks (KILT) show FiD-Light consistently improves the Pareto frontier between query latency and effectiveness. FiD-Light with source pointing sets substantial new state-of-the-art results on six KILT tasks for combined text generation and provenance retrieval evaluation, while maintaining reasonable efficiency.
翻译:在独立语言模型上,检索增强的生成模型带来许多好处:除了对特定查询的文本回答外,它们还提供从可更新的知识库中检索的出处项目。但是,它们也是更复杂的系统,需要处理长的输入。在这项工作中,我们引入FID-Light,以大大提高最先进的检索增强的FID模型的效率,同时保持同样的效能水平。我们的FID-Light模型限制从编码器(它单独编码段落)到解码器(使用混合的编码表达方式)的信息流动。此外,我们通过文本源点将FID-Light与重新排位能力相适应,以提高排位最高的源码精确度。我们在七组不同的知识密集型任务(KILT)上进行的实验显示,FID-Light始终在改善查询宽度和有效性之间的边界。 FiD-Light与源指点设置了在六个KILT任务上的新的状态结果,用于合并文本生成和开源检索,同时保持合理的效率。