We investigate the distribution of zeros of random polynomials with independent and identically distributed standard normal coefficients in the complex domain, obtain explicit formulas for the density and mean distribution of the zeros and level-crossings, and inquire into the consequences of their asymptotical evaluations for a variety of orthogonal polynomials. In addition, we bridge a small gap in the method of proof devised by Shepp and Vanderbei. Our approach makes use of the Jacobians of functions of several complex variables and the mean ratio of complex normal random variables.
翻译:我们调查在复杂领域独立和完全分布的标准正常系数的随机多元数值零的分布情况,为零和水平交叉系数的密度和平均分布获得明确的公式,并调查这些系数对各种正方位多数值的无症状评价的后果。此外,我们弥合了谢普和范德贝设计的证据方法中的一个小差距。我们的方法利用了数个复杂变量的功能和复杂正常随机变量的平均值。