With the development of data acquisition technology, large amounts of multi-channel data are collected and widely used in many fields. Most of them, such as RGB images and vector fields, can be expressed as different types of multi-channel functions. Feature extraction of multi-channel data for identifying interest patterns is a critical but challenging task. This paper focuses on constructing moment-based features of general multi-channel functions. Specifically, we define two transform models, rotation-affine transform and total rotation transform, to describe real deformations of multi-channel data. Then, we design a structural framework to generate Gaussian-Hermite moment invariants for these two transform models systematically. It is the first time that a unified framework has been proposed in the literature to construct orthogonal moment invariants of general multi-channel functions. Given a specific type of multi-channel data, we demonstrate how to utilize the new method to derive all possible invariants and eliminate dependences among them. We obtain independent sets of invariants with low orders and low degrees for RGB images, 2D vector fields and color volume data. Based on synthetic and real multi-channel data, we conduct extensive experiments to evaluate the stability and discriminability of these invariants and their robustness to noise. The results show that new moment invariants significantly outperform previous moment invariants of multi-channel data in RGB image classification and vortex detection in 2D vector fields.
翻译:随着数据获取技术的开发,大量多通道数据被收集并广泛用于许多领域,其中多数数据,如 RGB 图像和矢量字段,可以表述为不同类型的多通道功能。查找利益模式的特性提取多通道数据是一项关键但具有挑战性的任务。本文侧重于构建一般多通道功能的基于时空的特征。具体地说,我们定义了两种变换模式,即旋转-情感变换和总体旋转变换,以描述多通道数据的真正变形。然后,我们设计了一个结构框架,系统地为这两种变换模型生成高山-高度瞬间变异时数。这是文献中首次提议统一框架以构建或改变一般多通道功能的时空时空。鉴于一种特定的多通道数据类型,我们展示了如何使用新方法来获取所有可能的变异性并消除它们之间的依赖性。我们为RGB 图像、 2D 矢量字段和彩色体变异瞬间变异性时,在新变异性模型中大大地展示了这些变异性数据,在新变异性模型中,我们从合成和变异性变异性模型中,在新变异性模型中进行了大量的合成和变异性模型数据,在模型中,在新的变异性模型中,我们对新的变异性模型中,对新数据进行着的合成和变式数据进行新的变的变式的变式数据,对新数据进行新的变式的变式数据,在新的变式的变式数据,对新的变式数据进行了大量数据,对新的变式的变式数据,对新数据进行新的变式的变式的变式的变式,对新的变式的变式,对新的变式,对新的变式的变式的变式,对新的变式的变式,对新的的变式,对新的变式数据进行式数据进行式的变式,对新的的变式数据进行式数据进行式数据进行式数据进行式数据进行式数据进行式数据进行式数据进行到变式的变式数据进行到变式的变式的变式的变。