In physics, there is a scalar function called the action which behaves like a cost function. When minimized, it yields the "path of least action" which represents the path a physical system will take through space and time. This function is crucial in theoretical physics and is usually minimized analytically to obtain equations of motion for various problems. In this paper, we propose a different approach: instead of minimizing the action analytically, we discretize it and then minimize it directly with gradient descent. We use this approach to obtain dynamics for six different physical systems and show that they are nearly identical to ground-truth dynamics. We discuss failure modes such as the unconstrained energy effect and show how to address them. Finally, we use the discretized action to construct a simple but novel quantum simulation.
翻译:在物理学中, 有一种被称为“ 行动” 的 运算函数, 其行为就像成本函数。 当最小化时, 它产生“ 最小动作路径 ”, 代表物理系统在空间和时间中将走的道路 。 这个函数在理论物理中至关重要, 通常在分析上被最小化, 以获得各种问题的动作方程式 。 在本文中, 我们提出一种不同的方法: 与其在分析上将动作最小化, 我们把它分解, 然后直接以梯度下降为最小化 。 我们使用这个方法来获取六个不同的物理系统的动态, 并显示它们与地面- 真实性动态几乎完全相同 。 我们讨论失败模式, 比如不受约束的能量效应, 并展示如何解决这些问题 。 最后, 我们使用分解的动作来构建一个简单但新颖的量子模拟 。</s>