We consider many copies of a general mixed-state source $\rho^{AR}$ shared between an encoder and an inaccessible reference system $R$. We obtain a strong converse bound for the compression of this source. This immediately implies a strong converse for the blind compression of ensembles of mixed states since this is a special case of the general mixed-state source $\rho^{AR}$. Moreover, we consider the visible compression of ensembles of mixed states. For a bipartite state $\rho^{AR}$, we define a new quantity $E_{\alpha,p}(A:R)_{\rho}$ for $\alpha \in (0,1)\cup (1,\infty)$ as the $\alpha$-R\'enyi generalization of the entanglement of purification $E_{p}(A:R)_{\rho}$. For $\alpha=1$, we define $E_{1,p}(A:R)_{\rho}:=E_{p}(A:R)_{\rho}$. We show that for any rate below the regularization $\lim_{\alpha \to 1^+}E_{\alpha,p}^{\infty}(A:R)_{\rho}:=\lim_{\alpha \to 1^+} \lim_{n \to \infty} \frac{E_{\alpha,p}(A^n:R^n)_{\rho^{\otimes n}}}{n}$ the fidelity for the visible compression of ensembles of mixed states exponentially converges to zero. We conclude that if this regularized quantity is continuous with respect to $\alpha$, namely, if $\lim_{\alpha \to 1^+}E_{\alpha,p}^{\infty}(A:R)_{\rho}=E_{p}^{\infty}(A:R)_{\rho}$, then the strong converse holds for the visible compression of ensembles of mixed states.
翻译:我们考虑的是普通混合源的很多副本。 对于一个编码器和一个无法进入的参考系统共享的美元 $R$。 我们得到了一个用于压缩该源的强烈反方向。 这立即意味着对混合国家集合的盲压缩的强烈反方向, 因为这是普通混合源的特例 $rho _AR}。 此外, 我们考虑的是混合国家组合的可见压缩。 对于一个双向国家, 我们定义的是 $_r_r_r_ AR}$。 对于一个双向国家, 我们定义的是 $_ralpha, p} (A:R)\r_r_r_rho}美元 美元, $(0,1,1,\nf_r_r_r_r_r_r_r_r_r_rentr_r_r_r_ral_r_ral_r_r_xn: $_rentral_ral_ral_ral_r_r_r_r_r_r_r_r_r_r_r___r__ r_ r_ r___ r_______ r_ r_xxxxxxxxxxxx___________xxxxxxxxxxxxxxx_____________xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx