We apply a stochastic sequential quadratic programming (StoSQP) algorithm to solve constrained nonlinear optimization problems, where the objective is stochastic and the constraints are deterministic. We study a fully stochastic setup, where only a single sample is available in each iteration for estimating the gradient and Hessian of the objective. We allow StoSQP to select a random stepsize $\bar{\alpha}_t$ adaptively, such that $\beta_t\leq \bar{\alpha}_t \leq \beta_t+\chi_t$, where $\beta_t$, $\chi_t=o(\beta_t)$ are prespecified deterministic sequences. We also allow StoSQP to solve Newton system inexactly via randomized iterative solvers, e.g., with the sketch-and-project method; and we do not require the approximation error of inexact Newton direction to vanish. For this general StoSQP framework, we establish the asymptotic convergence rate for its last iterate, with the worst-case iteration complexity as a byproduct; and we perform statistical inference. In particular, with proper decaying $\beta_t,\chi_t$, we show that: (i) the StoSQP scheme can take at most $O(1/\epsilon^4)$ iterations to achieve $\epsilon$-stationarity; (ii) asymptotically and almost surely, $\|(x_t -x^\star, \lambda_t - \lambda^\star)\| = O(\sqrt{\beta_t\log(1/\beta_t)})+O(\chi_t/\beta_t)$, where $(x_t,\lambda_t)$ is the primal-dual StoSQP iterate; (iii) the sequence $1/\sqrt{\beta_t}\cdot (x_t -x^\star, \lambda_t - \lambda^\star)$ converges to a mean zero Gaussian distribution with a nontrivial covariance matrix. Moreover, we establish the Berry-Esseen bound for $(x_t, \lambda_t)$ to measure quantitatively the convergence of its distribution function. We also provide a practical estimator for the covariance matrix, from which the confidence intervals of $(x^\star, \lambda^\star)$ can be constructed using iterates $\{(x_t,\lambda_t)\}_t$. Our theorems are validated using nonlinear problems in CUTEst test set.
翻译:我们应用一个随机的连续二次二次编程( SttoSQP) 算法来解决限制的非线性优化问题, 目标为随机性, 限制为确定性。 我们研究完全的随机性设置, 在每个迭代中只有单一的样本可用于估算目标的梯度和 Hesian 。 我们允许 StoSQP 随机地将美元( bar_ alpha}t) 调适化, 例如 $\beta_ tleq\ leq_ matialch_ tatial_ $t$。 我们不需要最接近的牛顿方向( leta_ títa_ t ⁇ chi_ t$, 其中 $\ eta_ t$, 美元( beta_ t) 确定确定确定确定性序列序列。 我们还允许StoSQP通过随机化的热解解解调( e.g.) 使用素和项目方法( 并且我们不需要在最接近性牛顿方向消失。