Markov chain Monte Carlo (MCMC) is an all-purpose tool that allows one to generate dependent replicates from a posterior distribution for effectively any Bayesian hierarchical model. As such, MCMC has become a standard in Bayesian statistics. However, convergence issues, tuning, and the effective sample size of the MCMC are nontrivial considerations that are often overlooked or can be difficult to assess. Moreover, these practical issues can produce a significant computational burden. This motivates us to consider finding closed-form expressions of the posterior distribution that are computationally straightforward to sample from directly. We focus on a broad class of Bayesian generalized linear mixed-effects models (GLMM) that allows one to jointly model data of different types (e.g., Gaussian, Poisson, and binomial distributed observations). Exact sampling from the posterior distribution for Bayesian GLMMs is such a difficult problem that it is now arguably overlooked as a possible problem to solve. To solve this problem, we derive a new class of distributions that gives one the flexibility to specify the prior on fixed and random effects to be any conjugate multivariate distribution. We refer to this new distribution as the generalized conjugate multivariate (GCM) distribution, and several technical results are provided. The expression of the exact posterior distribution is given along with the steps to obtain direct independent simulations from the posterior distribution. These direct simulations have an efficient projection/regression form, and hence, we refer to our method as Exact Posterior Regression (EPR). Several theoretical results are developed that create the foundation for EPR. Illustrative examples are provided including a simulation study and an analysis of estimates from the U.S. Census Bureau's American Community Survey (ACS).


翻译:Markov 链 Monte Carlo(MCMC ) 是一个全功能工具,它允许人们从任何巴伊西亚等级模型的后端分布中产生依赖性复制。 因此, MCMC 已经成为巴伊西亚统计的一个标准。 然而, MC 的趋同、 调制和有效样本规模是非边际考虑, 常常被忽视或难以评估。 此外, 这些实际问题可以产生巨大的计算负担。 这促使我们考虑从任何贝叶斯亚氏等级模型中生成从后端分布到直接样本的反向复制。 我们侧重于一个广泛的巴伊西亚通用线性线性混合效应模型(GLMM ), 从而允许人们联合模拟不同类型( 如高萨、 Poisson 和 binomomical 分布观察) 的数据。 从Bayesian GLMM 的后端分布的Exact 取样是一个非常困难的问题, 现在可以被忽略为可能解决的一个问题。 为了解决这个问题, 我们从一个新的分布类别, 我们从一个具有一种灵活性的流分配, 包括 IMGl Ex- mate Exal dial dial resulation resulation resulation 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员