Data-driven paradigms using machine learning are becoming ubiquitous in image processing and communications. In particular, image-to-image (I2I) translation is a generic and widely used approach to image processing problems, such as image synthesis, style transfer, and image restoration. At the same time, neural image compression has emerged as a data-driven alternative to traditional coding approaches in visual communications. In this paper, we study the combination of these two paradigms into a joint I2I compression and translation framework, focusing on multi-domain image synthesis. We first propose distributed I2I translation by integrating quantization and entropy coding into an I2I translation framework (i.e. I2Icodec). In practice, the image compression functionality (i.e. autoencoding) is also desirable, requiring to deploy alongside I2Icodec a regular image codec. Thus, we further propose a unified framework that allows both translation and autoencoding capabilities in a single codec. Adaptive residual blocks conditioned on the translation/compression mode provide flexible adaptation to the desired functionality. The experiments show promising results in both I2I translation and image compression using a single model.
翻译:使用机器学习的数据驱动模式正在图像处理和通信中变得无处不在。 特别是,图像到图像(I2I)翻译是一种通用和广泛使用的图像处理问题处理方法,例如图像合成、样式传输和图像恢复。 同时,神经图像压缩已经出现,作为在视觉通信中传统编码方法的由数据驱动的替代方法。 在本文中,我们研究将这两个模式结合成一个联合的 I2I 压缩和翻译框架,重点是多面图像合成。我们首先提议通过将定量化和加密编码整合到 I2I 翻译框架(即 I2Icodec)来进行已分发的 I2I 翻译。在实践中,图像压缩功能(即自动编码)也是可取的,需要与 I2I 代码一起部署一个常规图像编码。 因此,我们进一步提议一个统一的框架,允许在单一的编码中进行翻译和自动编码能力。 以翻译/压缩模式为条件的适应性剩余区块,提供了对理想功能的灵活调整。 实验显示使用单一翻译的图像的压缩结果。