In this paper, we propose a numerical method for turning point problems in one dimension based on Petrov-Galerkin finite element method (PGFEM). We first give a priori estimate for the turning point problem with a single boundary turning point. Then we use PGFEM to solve it, where test functions are the solutions to piecewise approximate dual problems. We prove that our method has a first-order convergence rate in both $L^\infty$ norm and an energy norm when we select the exact solutions to dual problems as test functions. Numerical results show that our scheme is efficient for turning point problems with different types of singularities, and the convergency coincides with our theoretical results.
翻译:在本文中,我们根据Petrov-Galerkin有限元素法(PGFEM)提出了一个一个层面的转折点问题的数字方法。我们首先用一个单一的边界转折点对转折点问题作出先验估计。然后我们用PGFEM来解决它,测试功能是解决小问题的方法。我们证明,当我们选择作为测试函数的双重问题的确切解决办法时,我们的方法具有第一阶汇合率,即$-infty$标准,和能源标准。数字结果显示,我们的办法对于不同种类的奇点的转折点问题是有效的,而趋同性与我们的理论结果是一致的。