We consider the problem of universal dynamic regret minimization under exp-concave and smooth losses. We show that appropriately designed Strongly Adaptive algorithms achieve a dynamic regret of $\tilde O(d^2 n^{1/5} C_n^{2/5} \vee d^2)$, where $n$ is the time horizon and $C_n$ a path variational based on second order differences of the comparator sequence. Such a path variational naturally encodes comparator sequences that are piecewise linear -- a powerful family that tracks a variety of non-stationarity patterns in practice (Kim et al, 2009). The aforementioned dynamic regret rate is shown to be optimal modulo dimension dependencies and poly-logarithmic factors of $n$. Our proof techniques rely on analysing the KKT conditions of the offline oracle and requires several non-trivial generalizations of the ideas in Baby and Wang, 2021, where the latter work only leads to a slower dynamic regret rate of $\tilde O(d^{2.5}n^{1/3}C_n^{2/3} \vee d^{2.5})$ for the current problem.
翻译:我们考虑了在排除和顺流亏损下普遍动态降低遗憾最小化的问题。我们表明,设计得当的强有力的适应性算法实现了美元(d ⁇ 2 n ⁇ 1/5}C_n ⁇ 2/5}\vee d ⁇ 2美元(美元)的动态遗憾,其中美元是时间范围,而美元是一条基于参照序列的第二顺序差异而变化的路径。这种路径的自然变异性编码比较序列是纸质线形的 -- -- 一个跟踪各种实践中非静止模式的强大家族(Kim等人,2009年)。上述动态后悔率被显示为最理想的模量依赖度和多对数系数(美元)。我们的证据技术依赖于分析线外形形的KKT条件,并要求对2021年在婴儿和王中的思想进行若干非三重的概括,而后者只能导致当前问题的Un\tilde O(d ⁇ 1/3}C_N ⁇ 2/3}=vee d ⁇ 2.5}(美元)的减速率。