Vector Approximate Message Passing (VAMP) provides the means of solving a linear inverse problem in a Bayes-optimal way assuming the measurement operator is sufficiently random. However, VAMP requires implementing the linear minimum mean squared error (LMMSE) estimator at every iteration, which makes the algorithm intractable for large-scale problems. In this work, we present a class of warm-started (WS) methods that provides a scalable approximation of LMMSE within VAMP. We show that a Message Passing (MP) algorithm equipped with a method from this class can converge to the fixed point of VAMP while having a per-iteration computational complexity proportional to that of AMP. Additionally, we provide the Onsager correction and a multi-dimensional State Evolution for MP utilizing one of the WS methods. Lastly, we show that the approximation approach used in the recently proposed Memory AMP (MAMP) algorithm is a special case of the developed class of WS methods.
翻译:矢量近电文传递( VAMP) 提供了一种方法,在假设测量操作员有足够的随机性的情况下,用一种最佳方式解决线性反问题。 然而, VAMP 要求在每个迭代中执行线性最小平均正方差估计器( LMMSE), 使算法难以解决大规模问题。 在这项工作中, 我们展示了一组温暖启动( WS) 方法, 提供VAMP 内 LMMSE 可缩放的近似值。 我们显示, 装有该类方法的信息传递算法可以汇合到 VAMP 的固定点, 同时具有与 AMP 相成比例的按时间计算复杂度 。 此外, 我们提供Onsager 校正和多维进化状态, 用于使用一种WS 方法的 MP 。 最后, 我们显示, 最近提议的Mine AMP (MAMP) 算法中使用的近似方法是开发的WS 方法的特例 。