We design the first efficient sensitivity oracles and dynamic algorithms for a variety of parameterized problems. Our main approach is to modify the algebraic coding technique from static parameterized algorithm design, which had not previously been used in a dynamic context. We particularly build off of the `extensor coding' method of Brand, Dell and Husfeldt [STOC'18], employing properties of the exterior algebra over different fields. For the $k$-Path detection problem for directed graphs, it is known that no efficient dynamic algorithm exists (under popular assumptions from fine-grained complexity). We circumvent this by designing an efficient sensitivity oracle, which preprocesses a directed graph on $n$ vertices in $2^k poly(k) n^{\omega+o(1)}$ time, such that, given $\ell$ updates (mixing edge insertions and deletions, and vertex deletions) to that input graph, it can decide in time $\ell^2 2^kpoly(k)$ and with high probability, whether the updated graph contains a path of length $k$. We also give a deterministic sensitivity oracle requiring $4^k poly(k) n^{\omega+o(1)}$ preprocessing time and $\ell^2 2^{\omega k + o(k)}$ query time, and obtain a randomized sensitivity oracle for the task of approximately counting the number of $k$-paths. For $k$-Path detection in undirected graphs, we obtain a randomized sensitivity oracle with $O(1.66^k n^3)$ preprocessing time and $O(\ell^3 1.66^k)$ query time, and a better bound for undirected bipartite graphs. In addition, we present the first fully dynamic algorithms for a variety of problems: $k$-Partial Cover, $m$-Set $k$-Packing, $t$-Dominating Set, $d$-Dimensional $k$-Matching, and Exact $k$-Partial Cover. For example, for $k$-Partial Cover we show a randomized dynamic algorithm with $2^k poly(k)polylog(n)$ update time, and a deterministic dynamic algorithm with $4^kpoly(k)polylog(n)$ update time.
翻译:我们为各种参数化问题设计了第一个高效的灵敏度和动态算法。 我们的主要方法是修改从静态参数化算法设计( 之前没有在动态背景下使用的静态参数化算法设计中的代数编码技术。 我们特别在Brand, Dell 和 Husfelt [STOC'18] 的“ 扩展的编码” 方法下建, 在不同字段中使用外部代数的特性。 对于用于定向图形的 $k$- Path 检测问题, 已知不存在高效的动态算法( 由精密的假设 ) 。 我们通过设计一个高效的灵敏度或触算法技术来绕过它。 $2 k( k) 美元 元( nome) (美元) 的顶数 。 对于这个输入图来说, 它可以在时间( ell=2 pool- pol- dalental 美元) 和高概率下决定, 一个更新的图表是否包含 MIL 美元 或 美元 时间级的路径 。