We propose Im2Wav, an image guided open-domain audio generation system. Given an input image or a sequence of images, Im2Wav generates a semantically relevant sound. Im2Wav is based on two Transformer language models, that operate over a hierarchical discrete audio representation obtained from a VQ-VAE based model. We first produce a low-level audio representation using a language model. Then, we upsample the audio tokens using an additional language model to generate a high-fidelity audio sample. We use the rich semantics of a pre-trained CLIP (Contrastive Language-Image Pre-training) embedding as a visual representation to condition the language model. In addition, to steer the generation process towards the conditioning image, we apply the classifier-free guidance method. Results suggest that Im2Wav significantly outperforms the evaluated baselines in both fidelity and relevance evaluation metrics. Additionally, we provide an ablation study to better assess the impact of each of the method components on overall performance. Lastly, to better evaluate image-to-audio models, we propose an out-of-domain image dataset, denoted as ImageHear. ImageHear can be used as a benchmark for evaluating future image-to-audio models. Samples and code can be found inside the manuscript.
翻译:我们建议 Im2Wav, 一个图像导导开的开放式音频生成系统 。 根据一个输入图像或图像序列, Im2Wav 生成了一个具有语义相关性的音频。 Im2Wav 以两个变异语言模型为基础, 运行于从 VQ- VAE 模型获取的等级分立音频代表制。 我们首先使用语言模型生成一个低级别音频代表制。 然后, 我们用一个额外的语言模型来添加音效标符号, 以生成高忠诚度音频样本。 我们使用预先培训过的 CLIP (语言图像预培训前) 的丰富语义作为嵌入语言模型的视觉代表制。 此外, 为了引导生成过程向调节图像, 我们应用了无叙级指导制指导方法。 结果表明, Im2Wav 大大超越了评估基线的准确性和相关性评估度。 此外, 我们提供一种校正研究, 以更好地评估每个方法组件对总体性表现的影响。 最后, 为了更好地评估图像到图像模型的底部模型, 我们建议一个更好的评估。</s>