Base placement optimization (BPO) is a fundamental capability for mobile manipulation and has been researched for decades. However, it is still very challenging for some reasons. First, compared with humans, current robots are extremely inflexible, and therefore have higher requirements on the accuracy of base placements (BPs). Second, the BP and task constraints are coupled with each other. The optimal BP depends on the task constraints, and in BP will affect task constraints in turn. More tricky is that some task constraints are flexible and non-deterministic. Third, except for fulfilling tasks, some other performance metrics such as optimal energy consumption and minimal execution time need to be considered, which makes the BPO problem even more complicated. In this paper, a Scale-like disc (SLD) representation of the workspace is used to decouple task constraints and BPs. To evaluate reachability and return optimal working pose over SLDs, a reachability map (RM) is constructed offline. In order to optimize the objectives of coverage, manipulability, and time cost simultaneously, this paper formulates the BPO as a multi-objective optimization problem (MOOP). Among them, the time optimal objective is modeled as a traveling salesman problem (TSP), which is more in line with the actual situation. The evolutionary method is used to solve the MOOP. Besides, to ensure the validity and optimality of the solution, collision detection is performed on the candidate BPs, and solutions from BPO are further fine-tuned according to the specific given task. Finally, the proposed method is used to solve a real-world toilet coverage cleaning task. Experiments show that the optimized BPs can significantly improve the coverage and efficiency of the task.


翻译:基座位置优化(BPO)是移动操作的基本能力,并已研究了几十年。然而,出于某些原因,它仍然非常具有挑战性。首先,与人类相比,当前的机器人极其不灵活,因此对基座位置(BPs)的精度要求更高。其次,BP和任务约束彼此耦合。最优BP取决于任务约束,BP将反过来影响任务约束。更棘手的是,某些任务约束是灵活和不确定的。第三,除了完成任务外,还需要考虑一些其他性能指标,例如最佳能耗和最小执行时间,这使BPO问题更加复杂。本文使用一种类似于刻度的圆盘(SLD)表示工作区域,以解耦任务约束和BPs。为了对SLD上的可达性进行评估并返回最优的工作姿态,离线构建可达性图(RM)。为了同时优化覆盖、可操作性和时间成本等目标,本文将BPO制定为多目标优化问题(MOOP)。其中,时间最优目标被建模为旅行推销员问题(TSP),这更符合实际情况。采用进化方法来解决MOOP。此外,为确保解的有效性和优越性,对候选BPs进行碰撞检测,并根据具体的给定任务对来自BPO的解进行进一步微调。最后,该方法被用于解决一个真实的厕所覆盖清洁任务。实验证明,优化后的BPs可以显著提高任务的覆盖率和效率。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员