Bipartite graphs are rich data structures with prevalent applications and identifier structural features. However, less is known about their growth patterns, particularly in streaming settings. Current works study the patterns of static or aggregated temporal graphs optimized for certain down-stream analytics or ignoring multipartite/non-stationary data distributions, emergence patterns of subgraphs, and streaming paradigms. To address these, we perform statistical network analysis over web log streams and identify the governing patterns underlying the bursty emergence of mesoscopic building blocks, 2,2-bicliques known as butterflies, leading to a phenomenon that we call "scale-invariant strength assortativity of streaming butterflies". We provide the graph-theoretic explanation of this phenomenon. We further introduce a set of micro-mechanics in the body of a streaming growth algorithm, sGrow, to pinpoint the generative origins. sGrow supports streaming paradigms, emergence of 4-vertex graphlets, and provides user-specified configurations for the scale, burstiness, level of strength assortativity, probability of out-of-order records, generation time, and time-sensitive connections. Comprehensive Evaluations on pattern reproducing and stress testing validate the effectiveness, efficiency, and robustness of sGrow in realization of the observed patterns independent of initial conditions, scale, temporal characteristics, and model configurations. Theoretical and experimental analysis verify the robust ability of sGrow in generating streaming graphs based on user-specified configurations that affect the scale and burstiness of the stream, level of strength assortativity, probability of-of-order streaming records, generation time, and time-sensitive connections.
翻译:Bipartite 图形是丰富的数据结构结构,具有流行的应用和识别结构特征。然而,对于它们的成长模式,特别是在流状设置中的增长模式,人们了解得较少。当前工作研究为某些下流分析或忽略多部分/非静止数据分布而优化的静态或汇总时间图形模式、下流分析或忽视多部分/非静态数据分布、子图的出现模式和流式模式。为了解决这些问题,我们对网络日志流进行统计网络分析,并查明其爆发的混凝土建筑块、2,2,2个被称为黄油的生长模式背后的治理模式,导致一种我们称之为“流黄油流流流流流流流流流的大规模异性能力”的现象。我们提供了这一现象的图形理论解释。我们进一步在流式增长算法、SGrow,以定位源源源代码为根据,对流式结构模型模型、4-垂直直流流流流流的出现,并提供用户指定的配置配置结构结构流流流流流流流的大小,其规模是“规模-不稳定性”、流流流动流动能力水平、流流流动能力流流流流流流流变变变变能力能力能力、Gredictal 特性特性特性特性特性特性特性特性特性特性特征的模型生成,生成的概率变化的概率生成的概率记录生成的概率的概率的概率生成, 生成的概率生成的概率率率率率率率率率值生成和演算算算算算算算算算算算算算算算算算的模型的模型的模型, 度的模型的模型的模型的模型的精确性、精确性、精确性、精确性、精确度的概率的精确度的精确性、精确度的精确度的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型