ESports tournaments, such as Dota 2's The International (TI), attract millions of spectators to watch broadcasts on online streaming platforms, to communicate, and to share their experience and emotions. Unlike traditional streams, tournament broadcasts lack a streamer figure to which spectators can appeal directly. Using topic modelling and cross-correlation analysis of more than three million messages from 86 games of TI7, we uncover main topical and temporal patterns of communication. First, we disentangle contextual meanings of emotes and memes, which play a salient role in communication, and show a meta-topics semantic map of streaming slang. Second, our analysis shows a prevalence of the event-driven game communication during tournament broadcasts and particular topics associated with the event peaks. Third, we show that "copypasta" cascades and other related practices, while occupying a significant share of messages, are strongly associated with periods of lower in-game activity. Based on the analysis, we propose design ideas to support different modes of spectators' communication.

4
下载
关闭预览

相关内容

主题模型,顾名思义,就是对文字中隐含主题的一种建模方法。“苹果”这个词的背后既包含是苹果公司这样一个主题,也包括了水果的主题。   在这里,我们先定义一下主题究竟是什么。主题就是一个概念、一个方面。它表现为一系列相关的词语。比如一个文章如果涉及到“百度”这个主题,那么“中文搜索”、“李彦宏”等词语就会以较高的频率出现,而如果涉及到“IBM”这个主题,那么“笔记本”等就会出现的很频繁。如果用数学来描述一下的话,主题就是词汇表上词语的条件概率分布 。与主题关系越密切的词语,它的条件概率越大,反之则越小。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

0
5
下载
预览

Relevance search is to find top-ranked entities in a knowledge graph (KG) that are relevant to a query entity. Relevance is ambiguous, particularly over a schema-rich KG like DBpedia which supports a wide range of different semantics of relevance based on numerous types of relations and attributes. As users may lack the expertise to formalize the desired semantics, supervised methods have emerged to learn the hidden user-defined relevance from user-provided examples. Along this line, in this paper we propose a novel generative model over KGs for relevance search, named GREASE. The model applies to meta-path based relevance where a meta-path characterizes a particular type of semantics of relating the query entity to answer entities. It is also extended to support properties that constrain answer entities. Extensive experiments on two large-scale KGs demonstrate that GREASE has advanced the state of the art in effectiveness, expressiveness, and efficiency.

0
4
下载
预览

Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.

0
13
下载
预览

Incorporating knowledge graph (KG) into recommender system is promising in improving the recommendation accuracy and explainability. However, existing methods largely assume that a KG is complete and simply transfer the "knowledge" in KG at the shallow level of entity raw data or embeddings. This may lead to suboptimal performance, since a practical KG can hardly be complete, and it is common that a KG has missing facts, relations, and entities. Thus, we argue that it is crucial to consider the incomplete nature of KG when incorporating it into recommender system. In this paper, we jointly learn the model of recommendation and knowledge graph completion. Distinct from previous KG-based recommendation methods, we transfer the relation information in KG, so as to understand the reasons that a user likes an item. As an example, if a user has watched several movies directed by (relation) the same person (entity), we can infer that the director relation plays a critical role when the user makes the decision, thus help to understand the user's preference at a finer granularity. Technically, we contribute a new translation-based recommendation model, which specially accounts for various preferences in translating a user to an item, and then jointly train it with a KG completion model by combining several transfer schemes. Extensive experiments on two benchmark datasets show that our method outperforms state-of-the-art KG-based recommendation methods. Further analysis verifies the positive effect of joint training on both tasks of recommendation and KG completion, and the advantage of our model in understanding user preference. We publish our project at https://github.com/TaoMiner/joint-kg-recommender.

0
5
下载
预览

Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.

0
8
下载
预览

Existing multi-agent reinforcement learning methods are limited typically to a small number of agents. When the agent number increases largely, the learning becomes intractable due to the curse of the dimensionality and the exponential growth of agent interactions. In this paper, we present Mean Field Reinforcement Learning where the interactions within the population of agents are approximated by those between a single agent and the average effect from the overall population or neighboring agents; the interplay between the two entities is mutually reinforced: the learning of the individual agent's optimal policy depends on the dynamics of the population, while the dynamics of the population change according to the collective patterns of the individual policies. We develop practical mean field Q-learning and mean field Actor-Critic algorithms and analyze the convergence of the solution to Nash equilibrium. Experiments on Gaussian squeeze, Ising model, and battle games justify the learning effectiveness of our mean field approaches. In addition, we report the first result to solve the Ising model via model-free reinforcement learning methods.

0
3
下载
预览

Topic models are among the most widely used methods in natural language processing, allowing researchers to estimate the underlying themes in a collection of documents. Most topic models use unsupervised methods and hence require the additional step of attaching meaningful labels to estimated topics. This process of manual labeling is not scalable and often problematic because it depends on the domain expertise of the researcher and may be affected by cardinality in human decision making. As a consequence, insights drawn from a topic model are difficult to replicate. We present a semi-automatic transfer topic labeling method that seeks to remedy some of these problems. We take advantage of the fact that domain-specific codebooks exist in many areas of research that can be exploited for automated topic labeling. We demonstrate our approach with a dynamic topic model analysis of the complete corpus of UK House of Commons speeches from 1935 to 2014, using the coding instructions of the Comparative Agendas Project to label topics. We show that our method works well for a majority of the topics we estimate, but we also find institution-specific topics, in particular on subnational governance, that require manual input. The method proposed in the paper can be easily extended to other areas with existing domain-specific knowledge bases, such as party manifestos, open-ended survey questions, social media data, and legal documents, in ways that can add knowledge to research programs.

0
3
下载
预览

For extracting meaningful topics from texts, their structures should be considered properly. In this paper, we aim to analyze structured time-series documents such as a collection of news articles and a series of scientific papers, wherein topics evolve along time depending on multiple topics in the past and are also related to each other at each time. To this end, we propose a dynamic and static topic model, which simultaneously considers the dynamic structures of the temporal topic evolution and the static structures of the topic hierarchy at each time. We show the results of experiments on collections of scientific papers, in which the proposed method outperformed conventional models. Moreover, we show an example of extracted topic structures, which we found helpful for analyzing research activities.

0
7
下载
预览

A recent research trend has emerged to identify developers' emotions, by applying sentiment analysis to the content of communication traces left in collaborative development environments. Trying to overcome the limitations posed by using off-the-shelf sentiment analysis tools, researchers recently started to develop their own tools for the software engineering domain. In this paper, we report a benchmark study to assess the performance and reliability of three sentiment analysis tools specifically customized for software engineering. Furthermore, we offer a reflection on the open challenges, as they emerge from a qualitative analysis of misclassified texts.

0
3
下载
预览

We introduce a new approach for topic modeling that is supervised by survival analysis. Specifically, we build on recent work on unsupervised topic modeling with so-called anchor words by providing supervision through an elastic-net regularized Cox proportional hazards model. In short, an anchor word being present in a document provides strong indication that the document is partially about a specific topic. For example, by seeing "gallstones" in a document, we are fairly certain that the document is partially about medicine. Our proposed method alternates between learning a topic model and learning a survival model to find a local minimum of a block convex optimization problem. We apply our proposed approach to predicting how long patients with pancreatitis admitted to an intensive care unit (ICU) will stay in the ICU. Our approach is as accurate as the best of a variety of baselines while being more interpretable than any of the baselines.

0
3
下载
预览
小贴士
相关论文
The Measure of Intelligence
François Chollet
5+阅读 · 2019年11月5日
Tianshuo Zhou,Ziyang Li,Gong Cheng,Jun Wang,Yu'Ang Wei
4+阅读 · 2019年10月11日
Fenyu Hu,Yanqiao Zhu,Shu Wu,Liang Wang,Tieniu Tan
13+阅读 · 2019年3月5日
Yixin Cao,Xiang Wang,Xiangnan He,Zikun hu,Tat-Seng Chua
5+阅读 · 2019年2月17日
Xiang Wang,Dingxian Wang,Canran Xu,Xiangnan He,Yixin Cao,Tat-Seng Chua
8+阅读 · 2018年11月12日
Yaodong Yang,Rui Luo,Minne Li,Ming Zhou,Weinan Zhang,Jun Wang
3+阅读 · 2018年6月12日
Alexander Herzog,Peter John,Slava Jankin Mikhaylov
3+阅读 · 2018年6月3日
Rem Hida,Naoya Takeishi,Takehisa Yairi,Koichi Hori
7+阅读 · 2018年5月6日
Nicole Novielli,Daniela Girardi,Filippo Lanubile
3+阅读 · 2018年3月17日
George H. Chen,Jeremy C. Weiss
3+阅读 · 2017年12月7日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
12+阅读 · 2018年11月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
24+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
24+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Top