Reward is the driving force for reinforcement-learning agents. This paper is dedicated to understanding the expressivity of reward as a way to capture tasks that we would want an agent to perform. We frame this study around three new abstract notions of "task" that might be desirable: (1) a set of acceptable behaviors, (2) a partial ordering over behaviors, or (3) a partial ordering over trajectories. Our main results prove that while reward can express many of these tasks, there exist instances of each task type that no Markov reward function can capture. We then provide a set of polynomial-time algorithms that construct a Markov reward function that allows an agent to optimize tasks of each of these three types, and correctly determine when no such reward function exists. We conclude with an empirical study that corroborates and illustrates our theoretical findings.
翻译:奖赏是强化学习代理人的驱动力。 本文致力于理解奖赏的表达性, 以此捕捉我们想让代理人完成的任务。 我们将这项研究围绕三个新的“任务”的新抽象概念来进行, 这三个概念或许是可取的:(1) 一套可接受的行为,(2) 部分命令行为,或(3) 部分命令对轨迹。 我们的主要结果证明, 虽然奖赏可以表达许多这些任务, 但每个任务类型都有马可夫奖赏功能无法捕捉的事例。 我们然后提供一套多元时间算法, 用以构建Markov奖赏功能, 使代理人能够优化这三种类型的任务, 并正确确定何时不存在这种奖赏功能。 我们以一项经验性研究来结束我们的结论和说明我们的理论结论。