Mini-batch optimal transport (m-OT) has been successfully used in practical applications that involve probability measures with intractable density, or probability measures with a very high number of supports. The m-OT solves several sparser optimal transport problems and then returns the average of their costs and transportation plans. Despite its scalability advantage, m-OT is not a proper metric between probability measures since it does not satisfy the identity property. To address this problem, we propose a novel mini-batching scheme for optimal transport, named Batch of Mini-batches Optimal Transport (BoMb-OT), that can be formulated as a well-defined distance on the space of probability measures. Furthermore, we show that the m-OT is a limit of the entropic regularized version of the proposed BoMb-OT when the regularized parameter goes to infinity. We carry out extensive experiments to show that the new mini-batching scheme can estimate a better transportation plan between two original measures than m-OT. It leads to a favorable performance of BoMb-OT in the matching and color transfer tasks. Furthermore, we observe that BoMb-OT also provides a better objective loss than m-OT for doing approximate Bayesian computation, estimating parameters of interest in parametric generative models, and learning non-parametric generative models with gradient flow.


翻译:小型最佳运输(m-OT)已经成功地用于实际应用,其中包括使用难以控制的密度的概率措施,或使用非常高的支持量的概率措施。M-OT解决了几个稀疏的最佳运输问题,然后返回其成本和运输计划的平均值。尽管其可缩放优势,但M-OT并不是一种衡量概率措施之间的适当尺度,因为它不能满足身份属性。为了解决这一问题,我们提议了一个名为“小型小巴最佳运输(BoMb-OT)”的新型小型最佳运输(Batch of Mini-baches Opptimal Transport(BoMb-OT))的小型喷洒计划,它可以作为概率措施空间上一个明确界定的距离。此外,我们还表明,当常规化参数变得不精确时,拟议的BOM-OTM-OT的模型是其正正正正化版本。我们进行了广泛的实验,以表明新的微型喷洒计划可以估计比M-OT的两种原始措施更好的运输计划。它导致BoM-OT-OT(Bomb-OT)在匹配和彩色转移任务中取得有利的表现。此外,我们观察到,BMM-OT-OT-OT的模拟模型模型的模拟模型中也提供了一种不甚精确的测测深的模型,用来进行一种不精确的测测测测测的模型。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
专知会员服务
60+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
专知会员服务
60+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员