Mini-batch optimal transport (m-OT) has been successfully used in practical applications that involve probability measures with intractable density, or probability measures with a very high number of supports. The m-OT solves several sparser optimal transport problems and then returns the average of their costs and transportation plans. Despite its scalability advantage, m-OT is not a proper metric between probability measures since it does not satisfy the identity property. To address this problem, we propose a novel mini-batching scheme for optimal transport, named Batch of Mini-batches Optimal Transport (BoMb-OT), that can be formulated as a well-defined distance on the space of probability measures. Furthermore, we show that the m-OT is a limit of the entropic regularized version of the proposed BoMb-OT when the regularized parameter goes to infinity. We carry out extensive experiments to show that the new mini-batching scheme can estimate a better transportation plan between two original measures than m-OT. It leads to a favorable performance of BoMb-OT in the matching and color transfer tasks. Furthermore, we observe that BoMb-OT also provides a better objective loss than m-OT for doing approximate Bayesian computation, estimating parameters of interest in parametric generative models, and learning non-parametric generative models with gradient flow.
翻译:小型最佳运输(m-OT)已经成功地用于实际应用,其中包括使用难以控制的密度的概率措施,或使用非常高的支持量的概率措施。M-OT解决了几个稀疏的最佳运输问题,然后返回其成本和运输计划的平均值。尽管其可缩放优势,但M-OT并不是一种衡量概率措施之间的适当尺度,因为它不能满足身份属性。为了解决这一问题,我们提议了一个名为“小型小巴最佳运输(BoMb-OT)”的新型小型最佳运输(Batch of Mini-baches Opptimal Transport(BoMb-OT))的小型喷洒计划,它可以作为概率措施空间上一个明确界定的距离。此外,我们还表明,当常规化参数变得不精确时,拟议的BOM-OTM-OT的模型是其正正正正化版本。我们进行了广泛的实验,以表明新的微型喷洒计划可以估计比M-OT的两种原始措施更好的运输计划。它导致BoM-OT-OT(Bomb-OT)在匹配和彩色转移任务中取得有利的表现。此外,我们观察到,BMM-OT-OT-OT的模拟模型模型的模拟模型中也提供了一种不甚精确的测测深的模型,用来进行一种不精确的测测测测测的模型。