In this work, we investigate the regularized solutions and their finite element solutions to the inverse source problems governed by partial differential equations, and establish the stochastic convergence and optimal finite element convergence rates of these solutions, under pointwise measurement data with random noise. Unlike most existing regularization theories, the regularization error estimates are derived without any source conditions, while the error estimates of finite element solutions show their explicit dependence on the noise level, regularization parameter, mesh size, and time step size, which can guide practical choices among these key parameters in real applications. The error estimates also suggest an iterative algorithm for determining an optimal regularization parameter. Numerical experiments are presented to demonstrate the effectiveness of the analytical results.


翻译:在这项工作中,我们调查受部分差异方程式制约的反源问题的正规化解决方案及其有限元素解决方案,并根据随机噪音的点度测量数据,确定这些解决方案的随机趋同率和最佳有限元素趋同率。 与大多数现有的正规化理论不同,正规化误差估计数是在没有任何源条件的情况下得出的,而有限元素解决方案的误差估计数表明它们明显依赖噪音水平、正规化参数、网目尺寸和时间级大小,这些误差可以指导这些关键参数在实际应用中的实际选择。 误差估计数还表明确定最佳正规化参数的迭代算法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】数值计算C编程,319页pdf,Numerical C
专知会员服务
67+阅读 · 2020年4月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月30日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员