Numerical methods for the optimal transport problem is an active area of research. Recent work of Kitagawa and Abedin shows that the solution of a time-dependent equation converges exponentially fast as time goes to infinity to the solution of the optimal transport problem. This suggests a fast numerical algorithm for computing optimal maps; we investigate such an algorithm here in the 1-dimensional case. Specifically, we use a finite difference scheme to solve the time-dependent optimal transport problem and carry out an error analysis of the scheme. A collection of numerical examples is also presented and discussed.


翻译:计算最佳运输问题的数字方法是一个活跃的研究领域。北川和阿贝丁最近的工作表明,随着时间流到最佳运输问题解决的无限程度,根据时间决定的方程式的解决方案会以指数速度快速汇合。这意味着计算最佳地图的快速数字算法;我们在一维案例中调查这种算法。具体地说,我们使用一个有限差异方案来解决时间流逝的最佳运输问题,并对方案进行错误分析。还提出并讨论了一系列数字实例。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【干货书】数值计算C编程,319页pdf,Numerical C
专知会员服务
67+阅读 · 2020年4月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
特征方程的物理意义
算法与数学之美
6+阅读 · 2019年5月13日
《科学》(20190426出版)一周论文导读
科学网
5+阅读 · 2019年4月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
特征方程的物理意义
算法与数学之美
6+阅读 · 2019年5月13日
《科学》(20190426出版)一周论文导读
科学网
5+阅读 · 2019年4月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员