We propose a theory for matrix completion that goes beyond the low-rank structure commonly considered in the literature and applies to general matrices of low description complexity, including sparse matrices, matrices with sparse factorizations such as, e.g., sparse R-factors in their QR-decomposition, and algebraic combinations of matrices of low description complexity. The mathematical concept underlying this theory is that of rectifiability, a basic notion in geometric measure theory. Complexity of the sets of matrices encompassed by the theory is measured in terms of Hausdorff and Minkowski dimensions. Our goal is the characterization of the number of linear measurements, with an emphasis on rank-$1$ measurements, needed for the existence of an algorithm that yields reconstruction, either perfect, with probability 1, or with arbitrarily small probability of error, depending on the setup. Specifically, we show that matrices taken from a set $\mathcal{U}$ such that $\mathcal{U}-\mathcal{U}$ has Hausdorff dimension $s$ %(or is countably $s$-rectifiable) can be recovered from $k>s$ measurements, and random matrices supported on a set $\mathcal{U}$ of Hausdorff dimension $s$ %(or a countably $s$-rectifiable set) can be recovered with probability 1 from $k>s$ measurements. What is more, we establish the existence of $\beta$-H\"older continuous decoders recovering matrices taken from a set of upper Minkowski dimension $s$ from $k>2s/(1-\beta)$ measurements and, with arbitrarily small probability of error, random matrices supported on a set of upper Minkowski dimension $s$ from $k>s/(1-\beta)$ measurements.
翻译:----
我们提出了一种矩阵完成理论,超越了文献中通常考虑的低秩结构并适用于描述复杂度低的一般矩阵,包括稀疏矩阵,具有稀疏分解的矩阵(例如,其QR分解中的稀疏R因子)和低描述复杂度的矩阵代数组合。支撑该理论的数学概念是修正性,是几何测度理论中的基本概念。我们的目标是确定所需的线性测量数量,特别是秩为$1$的测量数量,在这个基础上,存在一个算法,使得可以进行完美或几乎无误差的重建,具体取决于设置。特别地,我们表明,从一个集合$\mathcal{U}$中取得的矩阵,使得$\mathcal{U}-\mathcal{U}$的Hausdorff维数为$s$(或可数$s$-可修补),可以从$k>s$个测量中恢复出来,并且,对于Hausdorff维数为$s$(或可数$s$-可修补)的支持随机矩阵,可以从$k>s$个测量中恢复,概率为1。此外,我们证明存在$\beta$-H\"older连续的译码器,可以从$k>2s/(1-\beta)$测量中恢复出从上Minkowski维度为$s$的集合中获取的矩阵,并且具有任意小的错误概率;同时,可以从$k>s/(1-\beta)$测量中恢复出从上Minkowski维度为$s$的集合中的支持随机矩阵,并具有任意小的错误概率。