知识图谱(KG)是一种灵活的结构,能够描述数据实体之间的复杂关系。目前,大多数KG嵌入模型都是基于负采样进行训练的,即模型的目标是最大限度地增加KG内被连接实体的某些相似度,同时最小化被采样的断开实体的相似度。负抽样通过只考虑负实例的子集,降低了模型学习的时间复杂度,这可能会由于抽样过程的不确定性而无法提供稳定的模型性能。为了避免这一缺陷,我们提出了一种新的KG嵌入高效非采样知识图谱嵌入框架(NS-KGE)。其基本思想是在模型学习中考虑KG中的所有负面实例,从而避免负面抽样。框架可应用于基于平方损失的知识图谱嵌入模型或其损失可转换为平方损失的模型。这种非抽样策略的一个自然副作用是增加了模型学习的计算复杂度。为了解决这一问题,我们利用数学推导来降低非采样损失函数的复杂度,最终为我们提供了比现有模型更好的KG嵌入效率和精度。在基准数据集上的实验表明,NS-KGE框架在效率和准确率方面均优于传统的基于负采样的模型,该框架适用于大规模知识图谱嵌入模型。

https://www.zhuanzhi.ai/paper/a63903c464665db631cd3167d395a238

成为VIP会员查看完整内容
37

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
43+阅读 · 2021年5月26日
专知会员服务
55+阅读 · 2021年5月17日
【SIGIR2021】基于嵌入的增量式时序知识图谱补全框架
专知会员服务
61+阅读 · 2021年4月21日
[WWW2021]图结构估计神经网络
专知会员服务
42+阅读 · 2021年3月29日
【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
39+阅读 · 2021年3月26日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
31+阅读 · 2021年2月27日
【WWW2021】本体增强零样本学习
专知会员服务
32+阅读 · 2021年2月26日
最新《知识图谱表示学习补全》综述论文,16页pdf
专知会员服务
65+阅读 · 2020年10月29日
【SIGIR2020-微软】知识图谱上的增强推荐推理
专知会员服务
74+阅读 · 2020年5月30日
ACL 2020 | 用于链接预测的开放知识图谱嵌入
PaperWeekly
6+阅读 · 2020年6月26日
论文浅尝 | 重新实验评估知识图谱补全方法
开放知识图谱
28+阅读 · 2020年3月29日
论文浅尝 | 基于属性嵌入的知识图谱实体对齐
开放知识图谱
8+阅读 · 2019年12月29日
【清华大学】元知识图谱推理
专知
129+阅读 · 2019年9月2日
论文浅尝 | 基于知识图谱中图卷积神经网络的推荐系统
开放知识图谱
67+阅读 · 2019年8月27日
论文浅尝 | 面向知识图谱补全的共享嵌入神经网络模型
开放知识图谱
31+阅读 · 2019年4月7日
关系推理:基于表示学习和语义要素
计算机研究与发展
18+阅读 · 2017年8月22日
Arxiv
9+阅读 · 2021年4月21日
Arxiv
8+阅读 · 2020年5月2日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
4+阅读 · 2018年11月26日
Arxiv
11+阅读 · 2018年9月28日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
5+阅读 · 2016年10月24日
VIP会员
相关VIP内容
专知会员服务
43+阅读 · 2021年5月26日
专知会员服务
55+阅读 · 2021年5月17日
【SIGIR2021】基于嵌入的增量式时序知识图谱补全框架
专知会员服务
61+阅读 · 2021年4月21日
[WWW2021]图结构估计神经网络
专知会员服务
42+阅读 · 2021年3月29日
【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
39+阅读 · 2021年3月26日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
31+阅读 · 2021年2月27日
【WWW2021】本体增强零样本学习
专知会员服务
32+阅读 · 2021年2月26日
最新《知识图谱表示学习补全》综述论文,16页pdf
专知会员服务
65+阅读 · 2020年10月29日
【SIGIR2020-微软】知识图谱上的增强推荐推理
专知会员服务
74+阅读 · 2020年5月30日
相关资讯
ACL 2020 | 用于链接预测的开放知识图谱嵌入
PaperWeekly
6+阅读 · 2020年6月26日
论文浅尝 | 重新实验评估知识图谱补全方法
开放知识图谱
28+阅读 · 2020年3月29日
论文浅尝 | 基于属性嵌入的知识图谱实体对齐
开放知识图谱
8+阅读 · 2019年12月29日
【清华大学】元知识图谱推理
专知
129+阅读 · 2019年9月2日
论文浅尝 | 基于知识图谱中图卷积神经网络的推荐系统
开放知识图谱
67+阅读 · 2019年8月27日
论文浅尝 | 面向知识图谱补全的共享嵌入神经网络模型
开放知识图谱
31+阅读 · 2019年4月7日
关系推理:基于表示学习和语义要素
计算机研究与发展
18+阅读 · 2017年8月22日
相关论文
Arxiv
9+阅读 · 2021年4月21日
Arxiv
8+阅读 · 2020年5月2日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
4+阅读 · 2018年11月26日
Arxiv
11+阅读 · 2018年9月28日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
5+阅读 · 2016年10月24日
微信扫码咨询专知VIP会员