Inferring how an epidemic will progress and what actions to take when presented with limited information is of critical importance for epidemiologists and health professionals. In real world settings, epidemiology data can be scarce or subject to reporting errors. In this project there are different epidemic scenarios simulated and, using hidden Markov Chains, it is attempted to mimic the imperfect data an epidemiologist will encounter. Furthermore, different kinds of compartmental models are modelled using the particle Markov Chain Monte Carlo algorithm with a variation of the adaptive Metropolis-Hastings algorithm to estimate the posterior density of the parameters underlying the models. Moreover, the sensitivity of these algorithms is investigated when subjected with changes in the dataset. This is accomplished by limiting the information provided, while using an adaptive approach on the posterior covariance of the parameters.
翻译:在现实世界环境中,流行病学数据可能是稀缺的或容易出现报告错误的。在这个项目中,模拟了不同的流行病情景,并使用隐蔽的Markov 链条,试图模仿流行病学人将遇到的不完善数据。此外,利用微粒Markov 链条 Monte Carlo算法模拟不同种类的分包模型,并采用适应性大都会-探险算法来估计模型参数的后方密度。此外,这些算法的敏感性在受数据集变化影响时会受到调查,其方法是限制提供的信息,同时对参数的后方变量采用适应性方法。