In this manuscript, we present a novel method for estimating the stochastic stability characteristics of metastable legged systems using the unscented transformation. Prior methods for stability analysis in such systems often required high-dimensional state space discretization and a broad set of initial conditions, resulting in significant computational complexity. Our approach aims to alleviate this issue by reducing the dimensionality of the system and utilizing the unscented transformation to estimate the output distribution. This technique allows us to account for multiple sources of uncertainty and high-dimensional system dynamics, while leveraging prior knowledge of noise statistics to inform the selection of initial conditions for experiments. As a result, our method enables the efficient assessment of controller performance and analysis of parametric dependencies with fewer experiments. To demonstrate the efficacy of our proposed method, we apply it to the analysis of a one-dimensional hopper and an underactuated bipedal walking simulation with a hybrid zero dynamics controller.
翻译:在这份手稿中,我们提出了一种利用无中枢变异来估计元稳定链系的随机稳定性特征的新方法。在这种系统中,先前的稳定分析方法往往需要高维状态空间的离散和一系列广泛的初始条件,从而产生巨大的计算复杂性。我们的方法旨在通过减少系统的维度和利用不突出变异来估计输出分布来缓解这一问题。这种技术使我们能够考虑到多种不确定性和高维系统动态的来源,同时利用以前对噪音统计的了解来为选择实验的初始条件提供信息。因此,我们的方法能够有效地评估控制器的性能和分析参数依赖性,而实验较少。为了展示我们拟议方法的功效,我们将其应用于对单维电流和与混合零动控制器的未完全起动的双动行走模拟器的分析中。