We give a $2^{\tilde{O}(\sqrt{n}/\epsilon)}$-time algorithm for properly learning monotone Boolean functions under the uniform distribution over $\{0,1\}^n$. Our algorithm is robust to adversarial label noise and has a running time nearly matching that of the state-of-the-art improper learning algorithm of Bshouty and Tamon (JACM '96) and an information-theoretic lower bound of Blais et al (RANDOM '15). Prior to this work, no proper learning algorithm with running time smaller than $2^{\Omega(n)}$ was known to exist. The core of our proper learner is a \emph{local computation algorithm} for sorting binary labels on a poset. Our algorithm is built on a body of work on distributed greedy graph algorithms; specifically we rely on a recent work of Ghaffari (FOCS'22), which gives an efficient algorithm for computing maximal matchings in a graph in the LCA model of Rubinfeld et al and Alon et al (ICS'11, SODA'12). The applications of our local sorting algorithm extend beyond learning on the Boolean cube: we also give a tolerant tester for Boolean functions over general posets that distinguishes functions that are $\epsilon/3$-close to monotone from those that are $\epsilon$-far. Previous tolerant testers for the Boolean cube only distinguished between $\epsilon/\Omega(\sqrt{n})$-close and $\epsilon$-far.
翻译:我们给出了 2 @ tilde{ O} (\\ qrt{ n} /\\ epsilon) $0, 1\\\ 美元以上 美元以下的正确学习单调布林函数的时间算法。 我们的算法对对抗性标签噪音非常强大, 运行时间接近于Bshout 和 Tamon (JACM '96) 的最新不适当的学习算法, 和 Blax 等人 (RANDOM'15) 的低信息理论约束。 在这项工作之前, 已知不存在运行时间小于 $2\ Omega (n) 的正确学习算法 。 我们合适的学习者的核心是 \ emph{ 本地计算算算算法 。 我们的算法是在分布式的贪婪图表算法算法( JACM'22) 上的一项工作, 它为在 LCLC Rubinfeld 和 Al 和 Alon 等 美元 美元 的 的图表中进行计算最大比值比值最高比值的算值比值的算法。 我们的 ODODAS'slus 的测试功能也是普通的平等的比值 。