We study word reconstruction problems. Improving a previous result by P. Fleischmann, M. Lejeune, F. Manea, D. Nowotka and M. Rigo, we prove that, for any unknown word $w$ of length $n$ over an alphabet of cardinality $k$, $w$ can be reconstructed from the number of occurrences as subwords (or scattered factors) of $O(k^2\sqrt{n\log_2(n)})$ words. Two previous upper bounds obtained by S. S. Skiena and G. Sundaram are also slightly improved: one when considering information on the existence of subwords instead of on the numbers of their occurrences, and, the other when considering information on the existence of factors.
翻译:我们研究了文字重建问题,改进了P.Fleischmann、M.Lejeune、F.Manea、D.Nowotka和M.Rigo的先前结果,我们证明,如果在基本字母为$k的字母上出现任何不明的字数,用美元长度等于美元,那么,可以用美元作为子字数(或零散系数)的字母数(或零散系数)来重建美元。S.S.Skiena和G.Sundaram获得的两个上限也略有改进:一个是考虑关于存在子字而不是其发生次数的信息,另一个是考虑存在因素的信息。