In this paper, we develop a novel approach to posterior contractions rates (PCRs), for both finite-dimensional (parametric) and infinite-dimensional (nonparametric) Bayesian models. Critical to our approach is the combination of an assumption of local Lipschitz-continuity for the posterior distribution with a dynamic formulation of the Wasserstein distance, here referred to as Wasserstein dynamics, which allows to set forth a connection between the problem of establishing PCRs and some classical problems in mathematical analysis, probability theory and mathematical statistics: the Laplace method for approximating integrals, Sanov's large deviation principles in the Wasserstein distance, rates of convergence of the mean Glivenko-Cantelli theorem, and estimates of weighted Poincar\'e-Wirtinger constants. Under dominated Bayesian models, we present two main results: i) a theorem on PCRs for the regular infinite-dimensional exponential family of statistical models; ii) a theorem on PCRs for a general dominated statistical model. Some applications of our results are presented for the regular parametric model, the multinomial model, the finite-dimensional and the infinite-dimensional logistic-Gaussian model and the infinite-dimensional linear regression. In general, our results lead to optimal PCRs in finite dimension, whereas in infinite dimension it is shown how the prior distribution may affect PCRs. With regards to infinite-dimensional Bayesian models for density estimation, our approach to PCRs is the first to consider strong norm distances on parameter spaces of functions, such as Sobolev-like norms, as most of the approaches in the classical (frequentist) and Bayesian literature deal with spaces of density functions endowed with $\mathrm{L}^p$ norms or the Hellinger distance.


翻译:在本文中,我们开发了一种新颖的方法来应对亚光缩缩率(PCRs),包括亚光度(参数)和无限度(非参数)巴伊西亚模型。对于我们的方法来说,关键在于将当地Lipschitz- continuity的假设结合成瓦塞斯坦距离的动态配方,这里称为瓦塞斯坦动力,这样可以将建立多光谱的问题与数学分析、概率理论和数学层面的一些传统问题联系起来:接近性整体的拉普尔方法,萨诺夫在瓦瑟斯坦距离的大规模偏离原则,平均值Glivenko-CantelliLorem的趋同率率,以及加权Poincar\'e-Wirtinger常数的估计数结合起来。在占主导地位的巴塞斯坦斯坦模式下,我们提出了两大主要结果:i) 建立多光度(PCRR) 用于统计模型的常量指数层面;ii) 考虑总受支配性统计模型的多度(CRyloral) 方法。一些我们结果的比值的比值值值值值的比值值值值值值值值值值值值值值值值值值,在前的模型中,直地基值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值到值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月7日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员