Calibration or parameter identification is used with computational mechanics models related to observed data of the modeled process to find model parameters such that good similarity between model prediction and observation is achieved. We present a Bayesian calibration approach for surface coupled problems in computational mechanics based on measured deformation of an interface when no displacement data of material points is available. The interpretation of such a calibration problem as a statistical inference problem, in contrast to deterministic model calibration, is computationally more robust and allows the analyst to find a posterior distribution over possible solutions rather than a single point estimate. The proposed framework also enables the consideration of unavoidable uncertainties that are present in every experiment and are expected to play an important role in the model calibration process. To mitigate the computational costs of expensive forward model evaluations, we propose to learn the log-likelihood function from a controllable amount of parallel simulation runs using Gaussian process regression. We introduce and specifically study the effect of three different discrepancy measures for deformed interfaces between reference data and simulation. We show that a statistically based discrepancy measure results in the most expressive posterior distribution. We further apply the approach to numerical examples in higher model parameter dimensions and interpret the resulting posterior under uncertainty. In the examples, we investigate coupled multi-physics models of fluid-structure interaction effects in biofilms and find that the model parameters affect the results in a coupled manner.
翻译:与模型模型校准相比,校准或参数识别与模型进程观测数据有关的计算机理模型使用,以找到模型预测和观测之间的良好相似性,从而找到模型预测和观察之间的良好相似性。我们根据没有材料点迁移数据时对界面的测变进行计算,对计算机理中的表面和表面问题提出贝叶斯校准方法。对诸如统计推论问题这样的校准问题的解释,与确定性模型校准相比,在计算时更为可靠,使分析员能够找到一个后方分布,而不是一个单一点估计。拟议的框架还能够考虑在每次试验中存在的不可避免的不确定性,并有望在模型校准过程中发挥重要作用。为了减轻昂贵的远方模型评估的计算成本,我们提议从可控量的平行模拟运行中学习日志比函数,使用高分数模型进程校正校正校正校准,我们引入并具体研究三个模型差异测量结果的效果,以便在参考数据和模拟中找到扭曲的界面。我们显示一个基于统计的不一致度测量结果,在最清晰的远的海表分布中,我们将用一个高的模型对模型模型的模型和多度分析结果进行解释。