Flexible estimation of multiple conditional quantiles is of interest in numerous applications, such as studying the effect of pregnancy-related factors on very low or high birth weight. We propose a Bayesian non-parametric method to simultaneously estimate non-crossing, non-linear quantile curves. We expand the conditional distribution function of the response in I-spline basis functions where the covariate-dependent coefficients are modeled using neural networks. By leveraging the approximation power of splines and neural networks, our model can approximate any continuous quantile function. Compared to existing models, our model estimates all rather than a finite subset of quantiles, scales well to high dimensions, and accounts for estimation uncertainty. While the model is arbitrarily flexible, interpretable marginal quantile effects are estimated using accumulative local effect plots and variable importance measures. A simulation study shows that our model can better recover quantiles of the response distribution when the data is sparse, and illustrative applications providing new insights on analyses of birth weight and tropical cyclone intensity are presented.
翻译:多种有条件量化的灵活估算是许多应用中感兴趣的,例如研究妊娠相关因素对非常低或高出生体重的影响。 我们建议采用巴伊西亚非参数方法,同时估计非交叉、非线性量化曲线。 我们扩大I-spline 函数中响应的有条件分布功能,即以神经网络为模型,对依赖共变量的系数进行计算; 通过利用浮标和神经网络的近似功率,我们的模型可以近似任何连续量化功能。 与现有模型相比,我们的模型估计全部而非一定的量化子集、高度至高度的尺度以及估计不确定性的核算。 虽然模型是任意灵活,但可解释的边微量效应是使用累积的地方效应图和可变重要性计量法估计的。 模拟研究表明,在数据稀少时,我们的模型可以更好地恢复响应分布的四分母体,并提供了说明性应用,对出生重量和热带气旋强度的分析提供了新的见解。