Image virtual try-on replaces the clothes on a person image with a desired in-shop clothes image. It is challenging because the person and the in-shop clothes are unpaired. Existing methods formulate virtual try-on as either in-painting or cycle consistency. Both of these two formulations encourage the generation networks to reconstruct the input image in a self-supervised manner. However, existing methods do not differentiate clothing and non-clothing regions. A straight-forward generation impedes virtual try-on quality because of the heavily coupled image contents. In this paper, we propose a Disentangled Cycle-consistency Try-On Network (DCTON). The DCTON is able to produce highly-realistic try-on images by disentangling important components of virtual try-on including clothes warping, skin synthesis, and image composition. To this end, DCTON can be naturally trained in a self-supervised manner following cycle consistency learning. Extensive experiments on challenging benchmarks show that DCTON outperforms state-of-the-art approaches favorably.
翻译:虚拟图像试演 虚拟试演 将个人图像上的衣服替换为理想的便衣服装图像 。 挑战性在于个人和店内服装没有受重视 。 现有方法将虚拟试演作为油漆或周期一致性来进行 。 这两种配方都鼓励生成网络以自我监督的方式重建输入图像 。 但是, 现有方法并不区分服装和非服装区域 。 直向前进的一代会阻碍虚拟试演质量, 因为图像内容紧密结合 。 在本文中, 我们提出一个不相干周期一致性试演网络( DCton) 。 DCton 能够通过拆译虚拟试演的重要内容, 包括服装扭曲、 皮肤合成和图像组成, 产生高度现实的试演图像 。 为此, DCton 在进行周期一致性学习后, 自然会以自我监督的方式培训。 质疑基准的大规模实验显示, DCton 超过艺术的状态方法 。