Few-shot classification in NLP has recently made great strides due to the availability of large foundation models that, through priming and prompting, are highly effective few-shot learners. However, this approach has high variance across different sets of few shots and across different finetuning runs. For example, we find that validation accuracy on RTE can vary by as much as 27 points. In this context, we make two contributions for more effective few-shot learning. First, we propose novel ensembling methods and show that they substantially reduce variance. Second, since performance depends a lot on the set of few shots selected, active learning is promising for few-shot classification. Based on our stable ensembling method, we build on existing work on active learning and introduce a new criterion: inter-prompt uncertainty sampling with diversity. We present the first active learning based approach to select training examples for prompt-based learning and show that it outperforms prior work on active learning. Finally, we show that our combined method, MEAL (Multiprompt finetuning and prediction Ensembling with Active Learning), improves overall performance of prompt-based finetuning by 2.3 absolute points on five different tasks.


翻译:国家学习计划(NLP)中少见的分类最近取得了长足进步,因为有大型基础模型,这些模型通过放大和促动,是高度有效的少发学生。然而,这一方法在不同几发不同镜头和不同微调运行之间差异很大。例如,我们发现,对RETE的验证准确性可以相差多达27个点。在这方面,我们为更有效的少发学习做出了两项贡献。首先,我们提出了新的组合方法,并表明它们大大缩小了差异。第二,由于绩效在很大程度上取决于所选的少数镜头组合,积极学习为少发的分类带来希望。根据我们稳定的组合方法,我们以现有的积极学习工作为基础,并采用新的标准:与多样性进行跨周期性不确定性抽样。我们提出第一个基于积极学习的积极学习方法,选择培训范例,并显示它比以前积极学习的工作要好。最后,我们展示了我们的综合方法,MEAL(Mulprompt 微调和预测与积极学习相结合),改进了以绝对分五点的快速调整的总体业绩。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月11日
Arxiv
0+阅读 · 2023年1月11日
Arxiv
0+阅读 · 2023年1月10日
Arxiv
14+阅读 · 2022年5月6日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
11+阅读 · 2020年12月2日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
13+阅读 · 2019年1月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2023年1月11日
Arxiv
0+阅读 · 2023年1月11日
Arxiv
0+阅读 · 2023年1月10日
Arxiv
14+阅读 · 2022年5月6日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
11+阅读 · 2020年12月2日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
13+阅读 · 2019年1月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员