Network data are ubiquitous in our daily life, containing rich but often sensitive information. In this paper, we expand the current static analysis of privatised networks to a dynamic framework by considering a sequence of networks with potential change points. We investigate the fundamental limits in consistently localising change points under both node and edge privacy constraints, demonstrating interesting phase transition in terms of the signal-to-noise ratio condition, accompanied by polynomial-time algorithms. The private signal-to-noise ratio conditions quantify the costs of the privacy for change point localisation problems and exhibit a different scaling in the sparsity parameter compared to the non-private counterparts. Our algorithms are shown to be optimal under the edge LDP constraint up to log factors. Under node LDP constraint, a gap exists between our upper bound and lower bound and we leave it as an interesting open problem.
翻译:网络数据在我们日常生活中无处不在, 包含丰富但往往敏感的信息。 本文通过考虑一系列具有潜在变化点的网络,将目前对私有化网络的静态分析扩展为动态框架。 我们调查了在节点和边缘隐私限制下一致定位变化点的基本限制,从信号到噪音比率的状态上显示了有趣的阶段性转变,并伴之以多元时间算法。 私人信号到噪音比率条件量化了改变点本地化问题的隐私成本,并展示了与非私人对应方相比的宽度参数的大小不同。 我们的算法显示在边缘 LDP 限制下最优化,直到日志因素。 在节点LDP 限制下,我们的上界和下界之间存在差距,我们留下一个有趣的开放问题。