Symplectic vector spaces are the phase spaces of linear mechanical systems. The symplectic form describes, for example, the relation between position and momentum as well as current and voltage. The category of linear Lagrangian relations between symplectic vector spaces is a symmetric monoidal subcategory of relations which gives a semantics for the evolution -- and more generally linear constraints on the evolution -- of various physical systems. We give a new presentation of the category of Lagrangian relations over an arbitrary field as a `doubled' category of linear relations. More precisely, we show that it arises as a variation of Selinger's CPM construction applied to linear relations, where the covariant orthogonal complement functor plays the role of conjugation. Furthermore, for linear relations over prime fields, this corresponds exactly to the CPM construction for a suitable choice of dagger. We can furthermore extend this construction by a single affine shift operator to obtain a category of affine Lagrangian relations. Using this new presentation, we prove the equivalence of the prop of affine Lagrangian relations with the prop of qudit stabilizer theory in odd prime dimensions. We hence obtain a unified graphical language for several disparate process theories, including electrical circuits, Spekkens' toy theory, and odd-prime-dimensional stabilizer quantum circuits.
翻译:相向矢量空间是线性机械系统的阶段空间。 相向形式描述了位置和动力以及当前和电压之间的关系。 相向矢量空间之间的线性拉格朗格关系是一个对称的单向子关系类别, 它为各种物理系统的演化提供了一种语义, 更一般地为各种物理系统的演化提供了线性限制。 我们可以用“ 双向” 的线性关系类别对一个任意的域进行新的演示。 更确切地说, 我们显示, 由Selinger 的 CPM 构造在线性关系中演化成变异, 共向性或共向补充的配方关系在线性关系中扮演着共鸣的作用。 此外, 对于主域的线性关系, 这与CPM 的构造是完全对应的, 用于适当选择匕首选的。 我们还可以通过一个单一的线性转移操作者来扩展这一构造, 以获得“ 双向” 线性关系类别。 更确切地说, 我们证明, 折式的C型平面理论和数个平流的平的平流的平流关系是等的平的平的。