We aim to address the problem of Natural Language Video Localization (NLVL)-localizing the video segment corresponding to a natural language description in a long and untrimmed video. State-of-the-art NLVL methods are almost in one-stage fashion, which can be typically grouped into two categories: 1) anchor-based approach: it first pre-defines a series of video segment candidates (e.g., by sliding window), and then does classification for each candidate; 2) anchor-free approach: it directly predicts the probabilities for each video frame as a boundary or intermediate frame inside the positive segment. However, both kinds of one-stage approaches have inherent drawbacks: the anchor-based approach is susceptible to the heuristic rules, further limiting the capability of handling videos with variant length. While the anchor-free approach fails to exploit the segment-level interaction thus achieving inferior results. In this paper, we propose a novel Boundary Proposal Network (BPNet), a universal two-stage framework that gets rid of the issues mentioned above. Specifically, in the first stage, BPNet utilizes an anchor-free model to generate a group of high-quality candidate video segments with their boundaries. In the second stage, a visual-language fusion layer is proposed to jointly model the multi-modal interaction between the candidate and the language query, followed by a matching score rating layer that outputs the alignment score for each candidate. We evaluate our BPNet on three challenging NLVL benchmarks (i.e., Charades-STA, TACoS and ActivityNet-Captions). Extensive experiments and ablative studies on these datasets demonstrate that the BPNet outperforms the state-of-the-art methods.


翻译:我们的目标是解决自然语言视频本地化(NLVL)问题,将视频部分与长长且未剪剪的视频中自然语言描述相对应的自然语言描述定位化(NLVL) 。 最新NLVL方法几乎是一阶段式的,通常可以分为两类:1) 锚基方法:首先预先确定一系列视频部分候选人(例如滑动窗口),然后对每个候选人进行分类; 2 无锚基方法:它直接预测每个视频框架的概率,作为正中部分的边界或中间框架。 然而,两种一阶段方法都有内在的缺陷:基于固定的NLVL方法容易受到超常规则的制约,进一步限制了以变异长度处理视频的能力。 虽然无锚方法无法利用部分层面的互动,从而取得低效的结果。 在本文中,我们提议一个新的边界建议网络(BPNet),一个通用的两阶段框架,在正阳性部分中,BPNet采用固定的模型,然后采用三阶段的Slock-realal-alalalalalalalal exal exal exal exal exal ex exal export lautes 。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
32+阅读 · 2021年6月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年12月21日
Arxiv
0+阅读 · 2022年12月20日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员