We introduce a homogeneous multigrid method in the sense that it uses the same embedded discontinuous Galerkin (EDG) discretization scheme for Poisson's equation on all levels. In particular, we use the injection operator developed in [LuRK2020] for HDG and prove optimal convergence of the method under the assumption of elliptic regularity. Numerical experiments underline our analytical findings.
翻译:我们引入了同质多电格方法,因为它对Poisson的方程式在各个级别上都采用了同样的内嵌不连续的Galerkin(EDG)离散计划,特别是我们使用在[Lurk2020] 中开发的注射操作员对HDG进行注射,并证明这种方法在假定椭圆常度的情况下是最佳的趋同。