The orthogonal decomposition factorizes a tensor into a sum of an orthogonal list of rankone tensors. We present several properties of orthogonal rank. We find that a subtensor may have a larger orthogonal rank than the whole tensor and prove the lower semicontinuity of orthogonal rank. The lower semicontinuity guarantees the existence of low orthogonal rank approximation. To fit the orthogonal decomposition, we propose an algorithm based on the augmented Lagrangian method and guarantee the orthogonality by a novel orthogonalization procedure. Numerical experiments show that the proposed method has a great advantage over the existing methods for strongly orthogonal decompositions in terms of the approximation error.
翻译:矩形分解因子将强分化成成一个整数列数的数个总和。 我们展示了数个正数级的属性。 我们发现一个子感应器的正数级可能比整数级大一些, 并证明正数级的低半连续性。 低半连续性保证了低正数级近似的存在。 为了适应正数分解, 我们提议了一个基于拉格朗加法的算法, 并通过一个新颖的正数化程序保证正数级的正数性。 数字实验显示, 就近数错误而言, 拟议的方法对于现有的强烈正数分解法有很大优势 。