We analyse backward Euler time stepping schemes for the primal DPG formulation of a class of parabolic problems. Optimal error estimates are shown in the natural norm and in the $L^2$ norm of the field variable. For the heat equation the solution of our primal DPG formulation equals the solution of a standard Galerkin scheme and, thus, optimal error bounds are found in the literature. In the presence of advection and reaction terms, however, the latter identity is not valid anymore and the analysis of optimal error bounds requires to resort to elliptic projection operators. It is essential that these operators be projections with respect to the spatial part of the PDE, as in standard Galerkin schemes, and not with respect to the full PDE at a time step, as done previously.
翻译:我们分析了原始DPG的落后的Euler时间阶梯计划,用于处理一类抛物线问题的原始DPG配方。最佳误差估计见于自然规律和实地变量的$L$2美元标准。对于热等式来说,我们原始DPG配方的解决方案等于标准Galerkin办法的解决方案,因此,在文献中发现了最佳误差界限。然而,在存在对流和反应术语的情况下,后一种特性不再有效,而最佳误差界限的分析则要求采用椭圆投影操作员。至关重要的是,这些操作员必须像标准Galerkin办法那样,对PDE的空间部分进行预测,而不是像以前那样,在一个时间步骤上对完整的PDE进行预测。