Low-order finite-element discretizations are well-known to provide effective preconditioners for the linear systems that arise from higher-order discretizations of the Poisson equation. In this work, we show that high-quality preconditioners can also be derived for the Taylor-Hood discretization of the Stokes equations in much the same manner. In particular, we investigate the use of geometric multigrid based on the $\boldsymbol{ \mathbb{Q}}_1iso\boldsymbol{ \mathbb{Q}}_2/ \mathbb{Q}_1$ discretization of the Stokes operator as a preconditioner for the $\boldsymbol{ \mathbb{Q}}_2/\mathbb{Q}_1$ discretization of the Stokes system. We utilize local Fourier analysis to optimize the damping parameters for Vanka and Braess-Sarazin relaxation schemes and to achieve robust convergence. These results are then verified and compared against the measured multigrid performance. While geometric multigrid can be applied directly to the $\boldsymbol{ \mathbb{Q}}_2/\mathbb{Q}_1$ system, our ultimate motivation is to apply algebraic multigrid within solvers for $\boldsymbol{ \mathbb{Q}}_2/\mathbb{Q}_1$ systems via the $\boldsymbol{ \mathbb{Q}}_1iso\boldsymbol{ \mathbb{Q}}_2/ \mathbb{Q}_1$ discretization, which will be considered in a companion paper.
翻译:低顺序的有限元素离散性是众所周知的,可为Poisson 方程式的更高顺序离散性产生的线性系统提供有效的先决条件。 在这项工作中, 我们显示也可以以同样的方式为Stokes 方程式的泰勒- Hood离散性能提供高质量的先决条件。 我们利用本地的Fourier分析优化Vanka和Braess-Sarazin 放松计划的界值参数,并实现强力趋同。 这些结果随后被校验, 与测量的多格性能进行比较。 而将Stocoys 操作器的离散性值直接应用到 $\bsol=_ bl+_b_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR__BAR__BAR__BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_B_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_ bBAR_ AS的系统中, 我们的解化度系统, =========xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx