Energy-based models have the natural advantage of flexibility in the form of the energy function. Recently, energy-based models have achieved great success in modeling high-dimensional data in computer vision and natural language processing. In accordance with these signs of progress, we build a versatile energy-based model for High Energy Physics events at the Large Hadron Collider. This framework builds on a powerful generative model and describes higher-order inter-particle interactions. It suits different encoding architectures and builds on implicit generation. As for applicational aspects, it can serve as a powerful parameterized event generator, a generic anomalous signal detector, and an augmented event classifier.
翻译:基于能源的模型具有能源功能形式灵活性的自然优势。最近,基于能源的模型在计算机视觉和自然语言处理方面成功模拟高维数据。根据这些进步迹象,我们为大型哈德龙对撞机的高能物理事件建立了一个多功能的基于能源的模型。这个框架以一个强大的基因模型为基础,描述了更高层次的跨粒体相互作用。它适合不同的编码结构,并以隐性生成为基础。在应用方面,它可以作为一个强大的参数化事件生成器、一个普通异常信号探测器和一个增强的事件分类器。