Combination therapy with multiple drugs is a potent therapy strategy for complex diseases such as cancer, due to its therapeutic efficacy and potential for reducing side effects. However, the extensive search space of drug combinations makes it challenging to screen all combinations experimentally. To address this issue, computational methods have been developed to identify prioritized drug combinations. Recently, Convolutional Neural Networks based deep learning methods have shown great potential in this community. Although the significant progress has been achieved by existing computational models, they have overlooked the important high-level semantic information and significant chemical bond features of drugs. It is worth noting that such information is rich and it can be represented by the edges of graphs in drug combination predictions. In this work, we propose a novel Edge-based Graph Transformer, named EGTSyn, for effective anti-cancer drug combination synergy prediction. In EGTSyn, a special Edge-based Graph Neural Network (EGNN) is designed to capture the global structural information of chemicals and the important information of chemical bonds, which have been neglected by most previous studies. Furthermore, we design a Graph Transformer for drugs (GTD) that combines the EGNN module with a Transformer-architecture encoder to extract high-level semantic information of drugs.


翻译:多药物联合治疗是治疗癌症等复杂疾病的有效策略,因其治疗效果好且有可能减少副作用。然而,药物组合的广泛搜索空间使得通过实验筛选所有组合变得困难。为了解决这个问题,已经开发了计算方法来识别优先的药物组合。最近,基于卷积神经网络的深度学习方法在这个领域展示出了巨大的潜力。虽然现有的计算模型已经取得了显著的进展,但他们忽视了重要的高级语义信息和药物的显著化学键特征。值得注意的是,这种信息是丰富的,并且可以通过药物组合预测中图的边缘表示。在这项工作中,我们提出了一种新颖的基于边缘的图变换器,名为EGTSyn,用于有效的抗癌药物组合协同预测。在EGTSyn中,设计了一种特殊的基于边缘的图神经网络(EGNN)来捕获化学物质的全局结构信息和重要的化学键信息,这些信息在大多数先前的研究中被忽略了。此外,我们设计了一种药物图变换器(GTD),它将EGNN模块与Transformer编码器相结合,以提取高级语义信息的药物。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
19+阅读 · 2019年11月23日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员