Advances in Generative AI tools have allowed designers to manipulate existing 3D models using text or image-based prompts, enabling creators to explore different design goals. Photochromic color-changing systems, on the other hand, allow for the reprogramming of surface texture of 3D models, enabling easy customization of physical objects and opening up the possibility of using object surfaces for data display. However, existing photochromic systems require the user to manually design the desired texture, inspect the simulation of the pattern on the object, and verify the efficacy of the generated pattern. These manual design, inspection, and verification steps prevent the user from efficiently exploring the design space of possible patterns. Thus, by designing an automated workflow desired for an end-to-end texture application process, we can allow rapid iteration on different practicable patterns. In this workshop paper, we discuss the possibilities of extending generative AI systems, with material and design constraints for reprogrammable surfaces with photochromic materials. By constraining generative AI systems to colors and materials possible to be physically realized with photochromic dyes, we can create tools that would allow users to explore different viable patterns, with text and image-based prompts. We identify two focus areas in this topic: photochromic material constraints and design constraints for data-encoded textures. We highlight the current limitations of using generative AI tools to create viable textures using photochromic material. Finally, we present possible approaches to augment generative AI methods to take into account the photochromic material constraints, allowing for the creation of viable photochromic textures rapidly and easily.


翻译:暂无翻译

0
下载
关闭预览

相关内容

生成式人工智能是利用复杂的算法、模型和规则,从大规模数据集中学习,以创造新的原创内容的人工智能技术。这项技术能够创造文本、图片、声音、视频和代码等多种类型的内容,全面超越了传统软件的数据处理和分析能力。2022年末,OpenAI推出的ChatGPT标志着这一技术在文本生成领域取得了显著进展,2023年被称为生成式人工智能的突破之年。这项技术从单一的语言生成逐步向多模态、具身化快速发展。在图像生成方面,生成系统在解释提示和生成逼真输出方面取得了显著的进步。同时,视频和音频的生成技术也在迅速发展,这为虚拟现实和元宇宙的实现提供了新的途径。生成式人工智能技术在各行业、各领域都具有广泛的应用前景。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员