Machine learning models often fail on out-of-distribution (OOD) samples. Visual prompts emerge as a light-weight adaptation method in input space for large-scale vision models. Existing vision prompts optimize a high-dimensional additive vector and require labeled data on training. However, we find this paradigm fails on test-time adaptation when labeled data is unavailable, where the high-dimensional visual prompt overfits to the self-supervised objective. We present convolutional visual prompts for test-time adaptation without labels. Our convolutional prompt is structured and requires fewer trainable parameters (less than 1 % parameters of standard visual prompts). Extensive experiments on a wide variety of OOD recognition tasks show that our approach is effective, improving robustness by up to 5.87 % over a number of large-scale model architectures.
翻译:机器学习模型通常在分配外( OOD) 样本中失败。 视觉提示作为大规模视觉模型输入空间的轻量适应方法出现。 现有视觉提示优化高维添加矢量, 并要求有标签的培训数据 。 然而, 我们发现, 当标签数据不存在时, 这个模式在测试- 时间适应上失败, 高维视觉提示超出自我监督的目标。 我们为测试- 时间适应提供动态视觉提示, 没有标签 。 我们的演进提示是结构化的, 需要较少的可训练参数( 低于标准视觉提示的1%参数 ) 。 对广泛各种 OOD 识别任务的广泛实验显示, 我们的方法是有效的, 使大量大型模型结构的强力提高5. 87% 。</s>