项目名称: 有机共晶的可控制备及其光电性能

项目编号: No.21473222

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 甄永刚

作者单位: 中国科学院化学研究所

项目金额: 96万元

中文摘要: 具有高性能、多功能的有机光电材料是近年来的研究热点,然而目前报道的绝大多数有机材料是单一组分,由于材料分子前线轨道不平衡的电子偶合作用等本征因素的限制,主要表现为一种电学性能或光学行为。双组分或多组分有机共晶的晶体堆积方式和聚集态与单组分晶体有很大不同,通过不同组分之间的协同和集合效应,表现出丰富新颖的光电性质,为器件高性能化、多功能化提供了一类非常重要的材料来源。我们通过引入电子给受体作用、π…π作用、S…S、偶极偶极作用、电子给受体作用、N-H…N键或C≡N…X等分子识别基团,设计合成高性能双极性电荷传输、高光电转换效率或兼具电荷传输和发光的有机共晶材料分子,结合晶体工程学,可控制备形貌规整、尺寸均一的有机共晶,进一步研究其器件光电性能。并通过对材料分子结构-共晶堆积结构-器件性能紧密关系的阐释,指导开发光电性能优异的新型有机共晶。

中文关键词: 有机半导体;光电性能;共晶;分子识别;晶体工程

英文摘要: High-performance or multifunctional organic optoelectronic materials is a current hot research topic, however, the widely investigated one-component organic materials generally exhibit only one kind of electronic or optical property due to the unbalanced electronic coupling of the frontier molecular orbitals and other intrinsic structure factors. Compared with one-component organic crystals, multicomponent organic crystals with different packing structures and aggregation states show a variety of novel optoelectronic properties through multi-component synergistic and collective effects, paving the way to the development of high-performance or multifunctional optoelectronic devices. By introducing molecular recognition groups with π???π, S???S, electron donor???acceptor, dipole???dipole, N-H???N or C≡N???X noncovalent interactions, we design to synthesize organic materials, which are expected to have excellent ambipolar charge transporting behaviours or high photoelectric conversion efficiency, or combine charge transporting behaviours with light emitting properties. Consequently, we aim to prepare the cocrystals with orderly morphology and uniform size by crystal engineering and study the optoelectronic performances by device fabrication. More importantly, the good understanding on the relationship of molecular structure-packing structure-device performance will give insight into the development of novel organic cocrystals with outstanding optoelectronic properties.

英文关键词: organic semiconductors;optoelectronic performances;cocrystals;molecular recognition;crystal engineering

成为VIP会员查看完整内容
0

相关内容

图神经网络前沿进展与应用
专知会员服务
146+阅读 · 2022年1月24日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
9+阅读 · 2021年10月17日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
45+阅读 · 2021年6月20日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年4月21日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月21日
小贴士
相关VIP内容
图神经网络前沿进展与应用
专知会员服务
146+阅读 · 2022年1月24日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
9+阅读 · 2021年10月17日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
45+阅读 · 2021年6月20日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年4月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员