Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and drones more and more closely. To promote and track the developments of object detection and tracking algorithms, we have organized three challenge workshops in conjunction with ECCV 2018, ICCV 2019 and ECCV 2020, attracting more than 100 teams around the world. We provide a large-scale drone captured dataset, VisDrone, which includes four tracks, i.e., (1) image object detection, (2) video object detection, (3) single object tracking, and (4) multi-object tracking. In this paper, we first present a thorough review of object detection and tracking datasets and benchmarks, and discuss the challenges of collecting large-scale drone-based object detection and tracking datasets with fully manual annotations. After that, we describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South. Being the largest such dataset ever published, VisDrone enables extensive evaluation and investigation of visual analysis algorithms for the drone platform. We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions. We expect the benchmark largely boost the research and development in video analysis on drone platforms. All the datasets and experimental results can be downloaded from https://github.com/VisDrone/VisDrone-Dataset.


翻译:因此,自动理解从无人驾驶飞机收集的视觉数据要求很高,使计算机视觉和无人驾驶飞机更加密切。为了促进和跟踪物体探测和跟踪算法的发展,我们与ECCV 2018、ICCV 2019和ECCV 2020联合组织了三次挑战讲习班,吸引了全世界100多个团队。我们提供了大规模无人机捕获数据集,即VisDrone,其中包括四个轨道,即:(1)图像物体探测,(2)视频物体探测,(3)单一物体跟踪,(4)多目标跟踪。我们首先对物体探测和跟踪算法的发展进行了彻底审查,并讨论了大规模收集无人机天体探测和跟踪数据集的挑战。此后,我们描述了我们的VisDrone数据集,从中国南北14个不同城市的不同城市的不同城市的不同城市/次城市区域采集了这些数据集,主要包括:(1)图像天体探测,(2)视频物体探测,(3)单一物体跟踪,(4)多目标跟踪。我们首先对天体探测和跟踪天体天体的大规模数据定位数据分析进行了最大规模的推进,我们从北到南方的天体/天体轨道对天体数据库进行大规模数据定位分析,然后对天体对天体的天体定位数据定位数据定位数据进行大规模分析,我们通过天体定位数据定位数据定位数据定位数据定位数据采集和天体分析,然后对天体定位数据定位数据定位数据定位数据定位进行大进行大规模分析。

0
下载
关闭预览

相关内容

目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
16+阅读 · 2021年3月2日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
5+阅读 · 2018年5月22日
Arxiv
6+阅读 · 2018年4月23日
VIP会员
相关VIP内容
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员