The increasing influence of unstructured external information, such as news articles, on stock prices has attracted growing attention in financial markets. Despite recent advances, most existing newsbased forecasting models represent all articles using sentiment scores or average embeddings that capture the general tone but fail to provide quantitative, context-aware explanations of the impacts of public sentiment on predictions. To address this limitation, we propose an interpretable keyword-guided network (IKNet), which is an explainable forecasting framework that models the semantic association between individual news keywords and stock price movements. The IKNet identifies salient keywords via FinBERTbased contextual analysis, processes each embedding through a separate nonlinear projection layer, and integrates their representations with the time-series data of technical indicators to forecast next-day closing prices. By applying Shapley Additive Explanations the model generates quantifiable and interpretable attributions for the contribution of each keyword to predictions. Empirical evaluations of S&P 500 data from 2015 to 2024 demonstrate that IKNet outperforms baselines, including recurrent neural networks and transformer models, reducing RMSE by up to 32.9% and improving cumulative returns by 18.5%. Moreover, IKNet enhances transparency by offering contextualized explanations of volatility events driven by public sentiment.
翻译:暂无翻译