Due to their inherent complexity, reasoning tasks have long been regarded as rigorous benchmarks for assessing the capabilities of machine learning models, especially large language models (LLMs). Although humans can solve these tasks with ease, existing models, even after extensive pre-training and post-training at scale, still fail to perform reasoning reliably. In this paper, we revisit reasoning tasks from a causal perspective, seeking to understand their behavior in latent space and to offer insights for addressing their challenges. Specifically, we cast reasoning tasks as a selection mechanism, in which high-level logical concepts function as selection operators on the given observations, such as, identifying the correct answer in a math problem or filling the appropriate entry in Sudoku. We emphasize two key properties of this formulation that shed light on the difficulty of reasoning tasks. First, the latent space exceeds the observation space in complexity, even when the correct answer is fully determined by the observed input. Second, the latent variables, corresponding to logical thought, are densely structured and exhibit strong dependencies. Building on this formulation, we introduce a framework, called SR$^2$, that incorporates the estimated latent variables as feedback into the selection mechanism, thereby facilitating the learning of dense dependencies among latent representations. The framework consists of three key modules: reflective representation learning, dependency self-refinement, and periodic intermediate alignment. Experimentally, we show that our approach yields significant gains in reasoning accuracy, for example, attaining over 10$\%$ improvement in performance with 8$\times$ fewer parameters on the Sudoku and Maze tasks over the recent advances.
翻译:暂无翻译