We present simple randomized and exchangeable improvements of Markov's inequality, as well as Chebyshev's inequality and Chernoff bounds. Our variants are never worse and typically strictly more powerful than the original inequalities. The proofs are short and elementary, and can easily yield similarly randomized or exchangeable versions of a host of other inequalities that employ Markov's inequality as an intermediate step. We point out some simple statistical applications involving tests that combine dependent e-values. In particular, we uniformly improve the power of universal inference, and obtain tighter betting-based nonparametric confidence intervals. Simulations reveal nontrivial gains in power (and no losses) in a variety of settings.


翻译:我们提出了马尔可夫不等式、切比雪夫不等式和切尔诺夫边界的简单随机化和可交换改进。我们的变量永远不会更劣,通常比原本的不等式更为强大。证明简单、基础,并可轻松产生许多其他利用马尔可夫不等式作为中间步骤的不等式的相似随机化或可交换版本。我们指出一些涉及组合依赖的e值的简单统计应用。特别地,我们均匀地提高了通用推断的功率,并得到更紧密的基于投注的非参数置信区间。模拟显示在各种情况下都有非平凡的功率增益(没有损失)。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
概率论和机器学习中的不等式
PaperWeekly
2+阅读 · 2022年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月22日
VIP会员
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员