For centuries, scientists have observed nature to understand the laws that govern the physical world. The traditional process of turning observations into physical understanding is slow. Imperfect models are constructed and tested to explain relationships in data. Powerful new algorithms can enable computers to learn physics by observing images and videos. Inspired by this idea, instead of training machine learning models using physical quantities, we used images, that is, pixel information. For this work, and as a proof of concept, the physics of interest are wind-driven spatial patterns. These phenomena include features in Aeolian dunes and volcanic ash deposition, wildfire smoke, and air pollution plumes. We use computer model simulations of spatial deposition patterns to approximate images from a hypothetical imaging device whose outputs are red, green, and blue (RGB) color images with channel values ranging from 0 to 255. In this paper, we explore deep convolutional neural network-based autoencoders to exploit relationships in wind-driven spatial patterns, which commonly occur in geosciences, and reduce their dimensionality. Reducing the data dimension size with an encoder enables training deep, fully connected neural network models linking geographic and meteorological scalar input quantities to the encoded space. Once this is achieved, full spatial patterns are reconstructed using the decoder. We demonstrate this approach on images of spatial deposition from a pollution source, where the encoder compresses the dimensionality to 0.02% of the original size, and the full predictive model performance on test data achieves a normalized root mean squared error of 8%, a figure of merit in space of 94% and a precision-recall area under the curve of 0.93.
翻译:几个世纪以来,科学家们观察了自然来理解物理世界的法律。 将观测转化为物理理解的传统过程是缓慢的。 建立和测试不完善模型是为了解释数据中的关系。 强大的新算法能够使计算机通过观察图像和视频学习物理。 受这个想法的启发, 我们不用用物理数量来训练机器学习模型, 而是使用图像, 也就是像素信息。 对于这项工作, 作为概念的证明, 兴趣物理是风驱动的空间模式。 这些现象包括了 Aeolian dunes 和火山灰沉降、野火烟雾和空气污染羽流的原创性曲线。 我们用计算机模型模拟空间沉降模式模拟空间沉降模式的近似图像, 其输出为红色、 绿色 和 蓝色 (RGB) 的假设成像设备, 其输出为红色、 绿色 和 蓝色 (RGB) 色彩图像, 其频道值介于 0 至 255 之间。 在本文中, 我们探索了深层神经网络 网络基于 空间空间空间空间模型的模型,, 直径直径直径,, 将这一空间图解的地理图解到 。