Probabilistic Denoising Diffusion models have emerged as simple yet very powerful generative models. Diffusion models unlike other generative models do not suffer from mode collapse nor require a discriminator to generate high quality samples. In this paper, we propose a diffusion model that uses a binomial prior distribution to generate piano-rolls. The paper also proposes an efficient method to train the model and generate samples. The generated music has coherence at time scales up to the length of the training piano-roll segments. We show how such a model is conditioned on the input and can be used to harmonize a given melody, complete an incomplete piano-roll or generate a variation of a given piece. The code is shared publicly to encourage the use and development of the method by the community.
翻译:传播模型与其他基因模型不同,不因模式崩溃而受到影响,也不要求歧视者生成高质量的样本。在本文中,我们提出了一个扩散模型,使用二进制前分发来制作钢琴卷轴。本文还提出了培训模型和生成样本的有效方法。所产生的音乐在时间上具有一致性,可达到钢琴卷卷部分培训的长度。我们展示了这种模型如何以输入为条件,并可用于调和某个旋律、完成一个不完整的钢琴卷或产生一个特定片段的变异。我们公开分享该代码是为了鼓励社区使用和发展该方法。</s>