Research in Curriculum Learning has shown better performance on the task by optimizing the sequence of the training data. Recent works have focused on using complex reinforcement learning techniques to find the optimal data ordering strategy to maximize learning for a given network. In this paper, we present a simple yet efficient technique based on continuous optimization trained with auto-encoding procedure. We call this new approach Training Sequence Optimization (TSO). With a usual encoder-decoder setup we try to learn the latent space continuous representation of the training strategy and a predictor network is used on the continuous representation to predict the accuracy of the strategy on the fixed network architecture. The performance predictor and encoder enable us to perform gradient-based optimization by gradually moving towards the latent space representation of training data ordering with potentially better accuracy. We show an empirical gain of 2AP with our generated optimal curriculum strategy over the random strategy using the CIFAR-100 and CIFAR-10 datasets and have better boosts than the existing state-of-the-art CL algorithms.
翻译:课程学习研究通过优化培训数据序列显示,在任务上表现较好。最近的工作重点是使用复杂的强化学习技术,以找到最佳的数据排序战略,最大限度地扩大特定网络的学习。在本文中,我们展示了一种基于经过自动编码程序培训的连续优化的简单而有效的技术。我们称之为培训序列优化(TSO)的新方法。我们用一种常用的编码器-解码器设置,试图学习培训战略的潜在空间持续代表形式,并且利用一个预测器网络来持续展示,以预测固定网络结构战略的准确性。性能预测器和编码器使我们能够通过逐步转向培训数据排序的潜在空间代表形式,从而实现基于梯度的优化,并可能更加准确。我们用CIFAR-100和CIFAR-10的随机战略,展示了我们产生的最佳课程战略的实证收益。我们利用CIFAR-100和CIFAR-10数据集,并比现有最先进的CL算法有了更好的推进力。